Enterprise 5G Deployment Example
This comprehensive example demonstrates deploying a complete private 5G network with O-RAN components for an enterprise manufacturing facility using the Nephio O-RAN Claude Agents system.
π― Scenario Overviewβ
Enterprise: Global Manufacturing Corp
Location: Manufacturing facility in Detroit, Michigan
Requirements:
- Ultra-low latency for industrial automation (< 5ms)
- High reliability (99.99% uptime)
- Private 5G network with 1000+ connected devices
- Integration with existing MES and ERP systems
- WG11 security compliance
- Energy efficiency target: > 0.6 Gbps/W
ποΈ Architectureβ
π Deployment Walkthroughβ
Phase 1: Environment Preparationβ
Step 1: Infrastructure Validationβ
# Validate the enterprise environment
claude-agent dependency-doctor-agent "check dependencies"
# Expected environment:
# - 3 physical servers (32 cores, 128GB RAM each)
# - 10Gbps networking with SR-IOV support
# - GPU acceleration (NVIDIA A100)
# - Enterprise security requirements
Validation Output:
β Go 1.24.6 with FIPS 140-3 support
β Kubernetes 1.30+ (v1.30.2)
β Hardware acceleration (SR-IOV, DPDK)
β Network connectivity (10Gbps)
β Security compliance tools available
β 384 CPU cores total, 384GB RAM
β GPU acceleration available (NVIDIA A100)
Step 2: Security Baselineβ
# Establish security baseline for manufacturing environment
claude-agent security-compliance-agent "enforce_fips_mode"
claude-agent security-compliance-agent "apply_wg11_policies"
# Configure OT/IT network segmentation
claude-agent security-compliance-agent "apply_zero_trust_policies"
Phase 2: Kubernetes Infrastructureβ
Step 3: Cluster Deploymentβ
# Create management cluster
claude-agent infrastructure-agent "create cluster"
# Deploy Nephio R5 components
claude-agent infrastructure-agent "install nephio"
# Configure enterprise storage
claude-agent infrastructure-agent "setup storage"
Cluster Configuration:
apiVersion: kind.x-k8s.io/v1alpha4
kind: Cluster
metadata:
name: enterprise-manufacturing
nodes:
- role: control-plane
labels:
node-type: control-plane
extraMounts:
- hostPath: /var/lib/manufacturing-data
containerPath: /data
- role: worker
labels:
node-type: edge-computing
hardware: gpu-accelerated
extraMounts:
- hostPath: /dev/sriov
containerPath: /dev/sriov
- role: worker
labels:
node-type: ran-functions
hardware: dpdk-enabled
- role: worker
labels:
node-type: ot-integration
security-zone: manufacturing-floor
Step 4: Network Configurationβ
# Setup SR-IOV and DPDK for high-performance networking
claude-agent config-management-agent "setup network"
# Configure network attachments for manufacturing
cat > manufacturing-network-attachments.yaml <<EOF
apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: manufacturing-fronthaul
namespace: oran
spec:
config: |
{
"cniVersion": "1.0.0",
"type": "sriov",
"name": "manufacturing-fronthaul",
"vlan": 100,
"spoofchk": "off",
"trust": "on",
"capabilities": {
"ips": true,
"mac": true
},
"ipam": {
"type": "whereabouts",
"range": "10.100.1.0/24"
}
}
---
apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: manufacturing-midhaul
namespace: oran
spec:
config: |
{
"cniVersion": "1.0.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {
"type": "whereabouts",
"range": "10.100.2.0/24"
}
}
EOF
kubectl apply -f manufacturing-network-attachments.yaml
Phase 3: O-RAN Network Functions Deploymentβ
Step 5: Near-RT RIC Platformβ
# Deploy Near-RT RIC optimized for manufacturing
claude-agent network-functions-agent "deploy ric"
# Configure manufacturing-specific xApps
claude-agent network-functions-agent "deploy xapp"
Manufacturing-Optimized RIC Configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: manufacturing-ric-config
namespace: ricplt
data:
ric-config.yaml: |
ricPlatform:
realTimeConstraints:
maxLatency: 1ms
jitterTolerance: 100us
manufacturingIntegration:
opcuaEnabled: true
mesIntegration: true
scadaIntegration: true
xApps:
- name: traffic-steering-manufacturing
priority: high
cpuLimit: "2"
memoryLimit: "4Gi"
- name: qos-management-urllc
priority: critical
cpuLimit: "4"
memoryLimit: "8Gi"
nodeSelector:
hardware: dpdk-enabled
Step 6: Network Slice Deploymentβ
# Deploy URLLC slice for critical manufacturing operations
claude-agent orchestrator-agent "deploy network slice urllc"
# Deploy eMBB slice for general connectivity
claude-agent orchestrator-agent "deploy network slice embb"
URLLC Network Slice Configuration:
apiVersion: nephio.org/v1alpha1
kind: NetworkSlice
metadata:
name: manufacturing-urllc
namespace: manufacturing
spec:
sliceType: ultra-reliable-low-latency
sliceId: '100001'
priority: critical
sites:
- name: manufacturing-floor
cu: 1
du: 2
ru: 8
requirements:
latency: 1ms
reliability: 99.999
availability: 99.99
bandwidth: 100Mbps
qosPolicy:
priorityLevel: 1
trafficClass: 'conversational'
allocationRetentionPriority: 1
guaranteedBitRate: 50Mbps
manufacturingIntegration:
protocols: ['OPC-UA', 'PROFINET', 'Modbus-TCP']
deterministic: true
timeSync: ieee1588v2
Step 7: O-RAN Componentsβ
# Deploy O-RAN CU with manufacturing optimizations
claude-agent network-functions-agent "deploy cu"
# Deploy O-RAN DU with DPDK acceleration
claude-agent network-functions-agent "deploy du"
# Configure O-RU connections (8 radio units)
for i in {1..8}; do
claude-agent network-functions-agent "configure ru $i"
done
Phase 4: SMO and AI/ML Integrationβ
Step 8: Non-RT RIC / SMO Deploymentβ
# Deploy SMO with manufacturing analytics
claude-agent network-functions-agent "deploy smo"
# Deploy manufacturing-specific rApps
claude-agent network-functions-agent "deploy rapp"
Manufacturing Analytics rApp:
#!/usr/bin/env python3
"""
Manufacturing Analytics rApp for Predictive Maintenance
Integrates with MES and provides real-time equipment health monitoring
"""
import asyncio
import json
from datetime import datetime
from typing import Dict, List
import numpy as np
from sklearn.ensemble import IsolationForest
import requests
import paho.mqtt.client as mqtt
class ManufacturingAnalyticsRApp:
def __init__(self):
self.policy_client = PolicyManagementClient()
self.mes_client = MESIntegrationClient()
self.anomaly_detector = IsolationForest(contamination=0.1)
self.equipment_data = {}
async def process_equipment_data(self, data: Dict):
"""Process real-time equipment telemetry"""
equipment_id = data.get('equipment_id')
metrics = data.get('metrics', {})
# Store historical data
if equipment_id not in self.equipment_data:
self.equipment_data[equipment_id] = []
self.equipment_data[equipment_id].append({
'timestamp': datetime.utcnow(),
'vibration': metrics.get('vibration', 0),
'temperature': metrics.get('temperature', 0),
'pressure': metrics.get('pressure', 0),
'current': metrics.get('current', 0)
})
# Anomaly detection
if len(self.equipment_data[equipment_id]) > 100:
recent_data = self.equipment_data[equipment_id][-100:]
features = np.array([[d['vibration'], d['temperature'],
d['pressure'], d['current']]
for d in recent_data])
anomaly_score = self.anomaly_detector.fit_predict(features)
if anomaly_score[-1] == -1: # Anomaly detected
await self.handle_equipment_anomaly(equipment_id, metrics)
async def handle_equipment_anomaly(self, equipment_id: str, metrics: Dict):
"""Handle detected equipment anomalies"""
# Create A1 policy for traffic prioritization
policy = {
"policy_id": f"emergency-{equipment_id}-{datetime.utcnow().timestamp()}",
"policy_type": "TrafficPrioritization",
"policy_data": {
"equipment_id": equipment_id,
"priority": "critical",
"guaranteed_bandwidth": "10Mbps",
"max_latency": "500us"
}
}
await self.policy_client.create_policy(policy)
# Notify MES system
await self.mes_client.send_maintenance_alert(
equipment_id=equipment_id,
severity="high",
predicted_failure_time="2 hours",
recommended_action="Schedule predictive maintenance"
)
print(f"Anomaly detected for equipment {equipment_id}")
print(f"Policy created: {policy['policy_id']}")
if __name__ == "__main__":
rapp = ManufacturingAnalyticsRApp()
asyncio.run(rapp.start())
Step 9: Edge AI/ML Deploymentβ
# Deploy Kubeflow for edge AI/ML
claude-agent data-analytics-agent "setup ml pipeline"
# Deploy manufacturing-specific AI models
claude-agent performance-optimization-agent "deploy_optimized_ai_models"
Edge AI Deployment Configuration:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: predictive-maintenance-model
namespace: manufacturing
spec:
predictor:
model:
modelFormat:
name: onnx
runtime: kserve-onnxruntime-gpu
storageUri: 's3://manufacturing-models/predictive-maintenance/v2.0'
resources:
requests:
cpu: '4'
memory: '8Gi'
nvidia.com/gpu: '1'
limits:
cpu: '8'
memory: '16Gi'
nvidia.com/gpu: '1'
minReplicas: 2
maxReplicas: 10
scaleTarget: 10 # 10ms target latency
scaleMetric: latency
transformer:
containers:
- name: feature-extractor
image: manufacturing/feature-extractor:v1.0
env:
- name: FEATURE_WINDOW
value: '30s'
- name: SAMPLING_RATE
value: '1000Hz'
Phase 5: Monitoring and Analyticsβ
Step 10: Comprehensive Monitoringβ
# Deploy monitoring stack optimized for manufacturing
claude-agent monitoring-analytics-agent "setup monitoring"
# Configure manufacturing-specific dashboards
claude-agent monitoring-analytics-agent "import dashboards"
Manufacturing KPI Dashboard Configuration:
{
"dashboard": {
"title": "Manufacturing 5G Performance Dashboard",
"uid": "manufacturing-5g-kpis",
"tags": ["manufacturing", "5g", "o-ran"],
"panels": [
{
"title": "URLLC Slice Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.99, oran_urllc_latency_histogram)",
"legendFormat": "P99 Latency (URLLC)"
}
],
"yAxes": [
{
"unit": "ms",
"max": 5
}
],
"alert": {
"conditions": [
{
"query": { "queryType": "" },
"reducer": { "params": [], "type": "last" },
"evaluator": { "params": [1], "type": "gt" }
}
],
"executionErrorState": "alerting",
"noDataState": "no_data",
"frequency": "10s",
"handler": 1,
"name": "Manufacturing URLLC Latency Alert",
"message": "URLLC latency exceeds 1ms threshold"
}
},
{
"title": "Equipment Connectivity",
"type": "stat",
"targets": [
{
"expr": "count(up{job=\"manufacturing-equipment\"} == 1)",
"legendFormat": "Connected Devices"
}
],
"fieldConfig": {
"defaults": {
"thresholds": {
"steps": [
{ "color": "red", "value": 0 },
{ "color": "yellow", "value": 950 },
{ "color": "green", "value": 1000 }
]
}
}
}
},
{
"title": "Energy Efficiency",
"type": "graph",
"targets": [
{
"expr": "sum(rate(network_transmit_bytes_total[5m])*8/1e9) / sum(node_power_watts)",
"legendFormat": "Gbps/Watt"
}
],
"yAxes": [
{
"unit": "gbps/watt",
"min": 0.6
}
]
},
{
"title": "Predictive Maintenance Alerts",
"type": "table",
"targets": [
{
"expr": "manufacturing_equipment_anomaly_score > 0.8",
"format": "table",
"instant": true
}
]
}
]
}
}
Step 11: Data Analytics Pipelineβ
# Setup manufacturing data pipeline
claude-agent data-analytics-agent "setup kafka"
claude-agent data-analytics-agent "deploy kpi calculator"
# Configure MES integration
kubectl apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: mes-integration-config
namespace: manufacturing
data:
integration.yaml: |
mes:
endpoint: "https://mes.manufacturing.corp/api/v1"
authentication:
type: oauth2
clientId: "5g-network-integration"
tokenEndpoint: "https://auth.manufacturing.corp/oauth/token"
dataMapping:
equipmentStatus: "/equipment/{id}/status"
productionMetrics: "/production/metrics"
qualityData: "/quality/measurements"
realTimeSync:
enabled: true
syncInterval: 1s
batchSize: 100
EOF
Phase 6: Testing and Validationβ
Step 12: End-to-End Testingβ
# Run comprehensive manufacturing-specific tests
claude-agent testing-validation-agent "run_complete_test_suite"
# Test URLLC slice performance
claude-agent testing-validation-agent "test urllc latency requirements"
# Validate equipment connectivity
claude-agent testing-validation-agent "test equipment connectivity 1000 devices"
Custom Manufacturing Tests:
#!/bin/bash
# Manufacturing-specific validation tests
echo "=== Manufacturing 5G Network Validation ==="
# Test 1: URLLC Latency Requirements
echo "Testing URLLC latency requirements (<1ms)..."
LATENCY=$(kubectl exec -n manufacturing test-pod -- ping -c 100 urllc-gateway.manufacturing | \
grep "min/avg/max" | awk -F'/' '{print $5}')
if (( $(echo "$LATENCY < 1" | bc -l) )); then
echo "β URLLC latency: ${LATENCY}ms (requirement: <1ms)"
else
echo "β URLLC latency: ${LATENCY}ms exceeds requirement"
exit 1
fi
# Test 2: Device Connectivity
echo "Testing device connectivity (target: 1000 devices)..."
CONNECTED_DEVICES=$(kubectl get pods -n manufacturing -l type=manufacturing-device | \
grep Running | wc -l)
if [ $CONNECTED_DEVICES -ge 1000 ]; then
echo "β Connected devices: ${CONNECTED_DEVICES}/1000"
else
echo "β Connected devices: ${CONNECTED_DEVICES}/1000 - below target"
fi
# Test 3: Energy Efficiency
echo "Testing energy efficiency (target: >0.6 Gbps/W)..."
EFFICIENCY=$(kubectl exec -n monitoring prometheus-0 -- \
promtool query instant 'sum(rate(network_transmit_bytes_total[5m])*8/1e9) / sum(node_power_watts)' | \
grep -oE '[0-9]+\.[0-9]+' | head -1)
if (( $(echo "$EFFICIENCY > 0.6" | bc -l) )); then
echo "β Energy efficiency: ${EFFICIENCY} Gbps/W (requirement: >0.6)"
else
echo "β Energy efficiency: ${EFFICIENCY} Gbps/W below requirement"
fi
# Test 4: AI/ML Inference Performance
echo "Testing AI/ML inference latency (target: <10ms P99)..."
AI_LATENCY=$(kubectl logs -n manufacturing predictive-maintenance-model --tail=1000 | \
grep "inference_latency_p99" | tail -1 | awk '{print $3}')
if (( $(echo "$AI_LATENCY < 10" | bc -l) )); then
echo "β AI/ML inference P99: ${AI_LATENCY}ms (requirement: <10ms)"
else
echo "β AI/ML inference P99: ${AI_LATENCY}ms exceeds requirement"
fi
echo "=== Manufacturing Validation Complete ==="
Step 13: Security Compliance Validationβ
# Final security audit
claude-agent security-compliance-agent "full_security_audit"
# Validate OT/IT network segmentation
claude-agent security-compliance-agent "validate network segmentation"
# Check manufacturing-specific compliance
kubectl apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
name: manufacturing-compliance-checklist
namespace: security
data:
checklist.yaml: |
compliance:
standards:
- name: "IEC 62443"
description: "Industrial communication networks security"
status: "compliant"
validatedAt: "2025-08-22T10:30:00Z"
- name: "NIST Cybersecurity Framework"
description: "Manufacturing sector cybersecurity"
status: "compliant"
validatedAt: "2025-08-22T10:30:00Z"
- name: "O-RAN WG11"
description: "O-RAN security specifications"
status: "compliant"
validatedAt: "2025-08-22T10:30:00Z"
networkSecurity:
otItSegmentation: true
zeroTrustArchitecture: true
encryptionInTransit: true
encryptionAtRest: true
accessControl:
rbacEnabled: true
multiFactorAuth: true
privilegedAccessManagement: true
EOF
π Deployment Resultsβ
Performance Metrics Achievedβ
Metric | Requirement | Achieved | Status |
---|---|---|---|
URLLC Latency (P99) | <1ms | 0.8ms | β |
Network Reliability | 99.99% | 99.997% | β |
Energy Efficiency | >0.6 Gbps/W | 0.73 Gbps/W | β |
Device Connectivity | 1000 devices | 1000 devices | β |
AI/ML Inference (P99) | <10ms | 7.2ms | β |
Deployment Time | <4 hours | 2.5 hours | β |
Resource Utilizationβ
Component | CPU Usage | Memory Usage | Storage Usage |
---|---|---|---|
O-RAN Components | 60% (192/320 cores) | 70% (268GB/384GB) | 45% (45TB/100TB) |
Edge AI/ML | 25% (80/320 cores) | 20% (76GB/384GB) | 15% (15TB/100TB) |
Monitoring & Analytics | 10% (32/320 cores) | 8% (30GB/384GB) | 25% (25TB/100TB) |
System Overhead | 5% (16/320 cores) | 2% (10GB/384GB) | 15% (15TB/100TB) |
Cost Analysis (Monthly)β
Category | Cost |
---|---|
Infrastructure (Hardware amortization) | $8,500 |
Software Licenses (Nephio, O-RAN SC) | $0 (Open Source) |
Network Connectivity | $1,200 |
Operations & Maintenance | $3,500 |
Energy Consumption | $2,800 |
Total Monthly Cost | $16,000 |
Cost per Connected Device | $16/device/month |
π§ Operational Proceduresβ
Daily Operations Checklistβ
#!/bin/bash
# Daily operations checklist for manufacturing 5G network
echo "=== Daily Manufacturing 5G Network Health Check ==="
# Check critical services
kubectl get pods -n oran | grep -v Running && echo "β οΈ O-RAN services issue" || echo "β
O-RAN services healthy"
kubectl get pods -n ricplt | grep -v Running && echo "β οΈ RIC services issue" || echo "β
RIC services healthy"
kubectl get pods -n manufacturing | grep -v Running && echo "β οΈ Manufacturing services issue" || echo "β
Manufacturing services healthy"
# Check device connectivity
CONNECTED_DEVICES=$(kubectl get pods -n manufacturing -l type=manufacturing-device | grep Running | wc -l)
echo "π± Connected devices: $CONNECTED_DEVICES/1000"
# Check network slice performance
URLLC_LATENCY=$(kubectl exec -n monitoring prometheus-0 -- promtool query instant 'histogram_quantile(0.99, oran_urllc_latency_histogram)' | grep -oE '[0-9]+\.[0-9]+')
echo "β‘ URLLC P99 latency: ${URLLC_LATENCY}ms"
# Check energy efficiency
EFFICIENCY=$(kubectl exec -n monitoring prometheus-0 -- promtool query instant 'sum(rate(network_transmit_bytes_total[5m])*8/1e9) / sum(node_power_watts)' | grep -oE '[0-9]+\.[0-9]+')
echo "π Energy efficiency: ${EFFICIENCY} Gbps/W"
# Check security status
kubectl get networkpolicies -A | wc -l | xargs echo "π Network policies active:"
echo "=== Daily Check Complete ==="
Maintenance Proceduresβ
Weekly Maintenanceβ
- Update Grafana dashboards with latest KPIs
- Review and rotate certificates
- Analyze energy consumption trends
- Update AI/ML models with latest training data
- Review security audit logs
Monthly Maintenanceβ
- Kubernetes cluster updates and patches
- O-RAN component updates
- Performance optimization review
- Capacity planning analysis
- Disaster recovery testing
Quarterly Maintenanceβ
- Major version updates (Nephio R5, O-RAN L Release)
- Security compliance re-certification
- Hardware refresh planning
- Network expansion planning
- Cost optimization review
π¨ Troubleshooting Guideβ
Common Issues and Solutionsβ
Issue: High URLLC Latencyβ
Symptoms: Latency >1ms affecting manufacturing operations Diagnosis:
# Check network path latency
kubectl exec -n manufacturing test-pod -- traceroute urllc-gateway
# Check CPU throttling on RAN components
kubectl top pods -n oran
# Check for network congestion
kubectl exec -n monitoring prometheus-0 -- promtool query instant 'rate(network_receive_bytes_total[1m])'
Resolution:
# Scale up RAN components
kubectl scale deployment oran-du --replicas=4 -n oran
# Apply traffic shaping
claude-agent performance-optimization-agent "optimize urllc traffic"
# Enable DPDK if not already enabled
kubectl patch deployment oran-du -n oran -p '{"spec":{"template":{"spec":{"containers":[{"name":"du","env":[{"name":"DPDK_ENABLED","value":"true"}]}]}}}}'
Issue: Device Connectivity Problemsβ
Symptoms: Manufacturing devices losing connection Diagnosis:
# Check RU status
kubectl get pods -n oran -l component=ru
# Check SR-IOV configuration
kubectl get sriovnetworknodepolicies -A
# Check network attachment definitions
kubectl get network-attachment-definitions -n manufacturing
Resolution:
# Restart affected RUs
kubectl rollout restart daemonset/oran-ru -n oran
# Reconfigure network attachments
claude-agent config-management-agent "setup network"
Emergency Proceduresβ
Production Line Outageβ
-
Immediate Response (0-5 minutes)
- Check manufacturing pod status
- Verify URLLC slice connectivity
- Enable backup connectivity if available
-
Short-term Mitigation (5-15 minutes)
- Scale critical services
- Reroute traffic through backup paths
- Notify MES system of degraded performance
-
Resolution (15-60 minutes)
- Identify root cause
- Apply permanent fix
- Validate full functionality restoration
π Success Metrics & ROIβ
Operational Improvementsβ
- Reduced Downtime: 45% reduction in unplanned downtime
- Improved Efficiency: 12% increase in overall equipment effectiveness (OEE)
- Energy Savings: 18% reduction in energy consumption per unit produced
- Maintenance Optimization: 35% reduction in maintenance costs through predictive maintenance
ROI Analysis (Annual)β
- Implementation Cost: $350,000 (hardware, software, deployment)
- Operational Savings: $420,000/year
- Productivity Gains: $280,000/year
- Energy Savings: $85,000/year
- Maintenance Savings: $125,000/year
- Total Annual Benefit: $910,000/year
- ROI: 160% in first year
Business Impactβ
- Production Capacity: Increased by 15% through optimized automation
- Quality Improvement: 25% reduction in defect rates
- Time to Market: 20% faster product development cycles
- Competitive Advantage: First in industry with private 5G manufacturing
This comprehensive enterprise example demonstrates how the Nephio O-RAN Claude Agents system can deliver significant business value through intelligent automation, advanced O-RAN technologies, and seamless enterprise integration.